Printlog

From Robin

Revision as of 13:43, 6 September 2010 by Yngveha (Talk | contribs)
Jump to: navigation, search

Contents

The 3D-printing log

In this page we would like all that has made a 3D-print to add a few lines about their 3D-printing project.

What we would like to have covered is at least, but not limited to

The name of the design or project
Your name and position
A picture of the CAD model
A short description of the purpose of the design
One or more pictures of the design, preferably in use.
Interesting discoveries or aspects with this model

Feel free to add links to project websites or your own homepage.

Please insert your entry above the entries that have already been made.

Log entries

Copy the sample text below and fill in:

<design name>

By: <your name>

[[Fil:<your_design_picture>]]

Purpose: <your purpose>

[[Fil:<your physical model>]]

Discoveries: <your discoveries>


Hingetest

By: Yngve Hafting

Fil:Mattest2.jpg

Purpose: To test if tango+ can be used in a hinge, as a sort of spring

Fil:hengsler2.jpg

Discoveries:

  • 0.25mm gap using glossy will fuse in glossy vertical gaps => use matte option to cover with support and avoid fusing (middle model)
  • 5mm radius 2x30 degree overlap, 0.25mm gap hinge will work as a not too tight snap-fit (the model at the top)
  • Tango+ blob, detached in one end will not be able to push back the hinge in position (top, middle model)
  • Tango+ will straighten the hinge when attached to both parts (bottom model). It does have a weak fully dampened pull-back.


FlexiFoot

By: Yngve Hafting

Fil:Foot_E.jpgFil:Fot_sketch.jpg

Purpose: To test how flexible 1mmx10mm thick fullcure 720 is, and see if a surrounding blob of tango+ makes the foot stronger or flex differently.

Fil:Foot_picture.jpg

Discoveries:

  • 1mm Fullcure 720 appears to be quite firm.
  • The fullcure 720 properties dominates when it comes to rigidness, although it is flexible.
  • Model D and B is only slightly easier to bend than C because of the different Tango+ configurations.
  • Model A broke violently close to the center when its legs were bent too much (was not able to bend the ends so they touched each other.).
  • I was able to put the legs that were closest to each other- together- with B, while A broke on the same manouver.
    • B did not go back to its original shape after that
    • B broke on the third attempt to squeeze the closest legs together
  • Model C also broke on that manoever. It didnt break in the center, but in one of the legs, just where fullcure reached 1mm thickness.


Ball joint material test

By: Yngve Hafting

Fil:Mattest1.jpg Fil:Mattest2.jpg

Purpose: To test some of the material properties for both Tango+ and Fullcure720

Fil:Mattest3.jpg Fil:Mattest4.jpg

Discoveries:

  • The inner blob was made in Tango+ to push the balljoint back in position. Being attached to the cup and free from the balljoint, it did push back the joint some, but not nearly 100%. After some manipulation, the inner blob in one of the joints got detached from the cup. To have better spring effects the ball must be attached to both the balljoint and the cup, if it will survive the physical manipulation.
  • 0.25mm works for clearance
  • At first, the whole joint was rigid due to the support material. removing support without "breaking" it up is impossible when using only 0.25mm gap.
  • Breaking loose the parts is somewhat violent and possibly harmful to the inner blob in this case.


Tango+ disk test

By: Yngve Hafting

Fil:tangopdisktest1.jpg

Purpose: To test the properties of tango+ for use in joints.

  • Models were made in three sizes and three configurations:
    • h/d = 0.5, 0.25, 0.1
    • d= 5, 10, 15mm

Fil:tangopdisktest2.jpg

Discoveries:

  • h/d = 0.1 (smallest disk) feels almost rigid.
  • twisting tango+ is easier than bending, thus twisting is the easiest way to tear the material.
  • small models are easy to manipulate, and "invites" you to play too harsh => tango+ breaks.
  • Volume seems constant on the tango+ material (streching makes thinner, compressing makes thicker)
  • Tearing the material by compressing (straight) is nearly impossible by hand
  • Tearing by stretching is possible, but very hard with the large models
  • Tearing by bending is easy
  • Tearing by twisting is very easy
  • When stretching only, tango+ tears near the edge of fullcure 720
Personal tools
Front page