Neural Modularity Helps Organisms Evolve to Learn New Skills Without Forgetting Old Skills

PLoS Computational Biology, April 2015

Kai Olav Ellefsen

Jean-Baptiste Mouret

Jeff Clune

Background and Motivation

In Artificial Neural Networks: Catastrophic Interference

CATASTROPHIC INTERFERENCE IN CONNECTIONIST NETWORKS: THE SEQUENTIAL LEARNING PROBLEM

Michael McCloskey Neal J. Cohen

Connectionist Models of Recognition Memory: Constraints Imposed by Learning and Forgetting Functions

> Roger Ratcliff Northwestern University

Learning Skill A then Learning Skill B

Natural Neural Networks are Modular Low Modularity High Modularity

Modularity Can Reduce Interference

Can We Evolve Modular Neural Networks?

Can We Evolve Modular Neural Networks?

Clune, Mouret and Lipson (2013)

Experiment – Hypothesized result

Experiment – Hypothesized results

Evolving Learning Abilities

- Evolution optimized *learning neural networks*
- Each individual was subjected to a number of learning episodes, and awarded a fitness value based on its ability to learn without forgetting
- The learning task abstracted an animal learning food preferences in a seasonally varying environment

A Single Fitness Test

Results

Performance

Modularity

Connection Costs

Performance Alone

The Best Networks From Independent Evolutionary Runs

Two Benefits of Modularity:

Separating Skills from Learning Signals

Reducing Interference Between Learned Skills

Connection Costs Performance Alone FREE

Summary

- Sequential learning is an important and difficult challenge for neural networks
- Adding a connection cost during evolution increases modularity and performance on this task
- Connection-cost individuals are better at retaining learned skills

Important issues for future work

- More complex learning tasks
- Different learning paradigms
- Deeper analyses of the modularity. Is there a functional modularity?
- Separating skills but allowing shared knowledge