

Photo from PAL Robotics

Who is TIAGo?

ROBIN SEMINAR ADEL BASELIZADEH 04-05-2023

Agenda

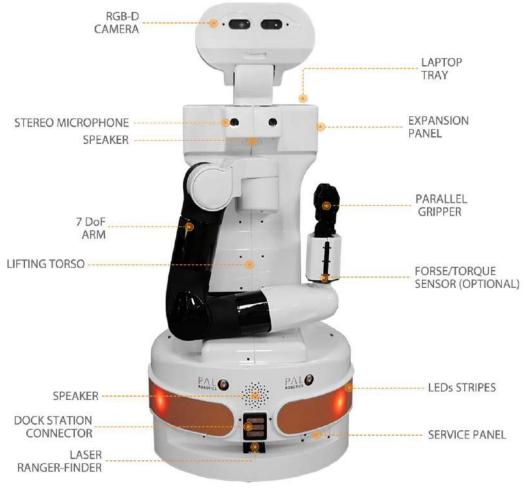
- 1. Why TIAGo?
- 2. TIAGo at first glance
- 3. Hardware of TIAGo
 - Mobile base
 - Torso
 - Arm manipulator
 - Head
 - Onboard computer and external processor
 - Joystick

- 4. Software of TIAGo
 - ROS
 - Web commander
 - Packages/libraries
 - Simulator
- 5. How to learn TIAGo?
- 6. TIAGo for research

Why TIAGo?

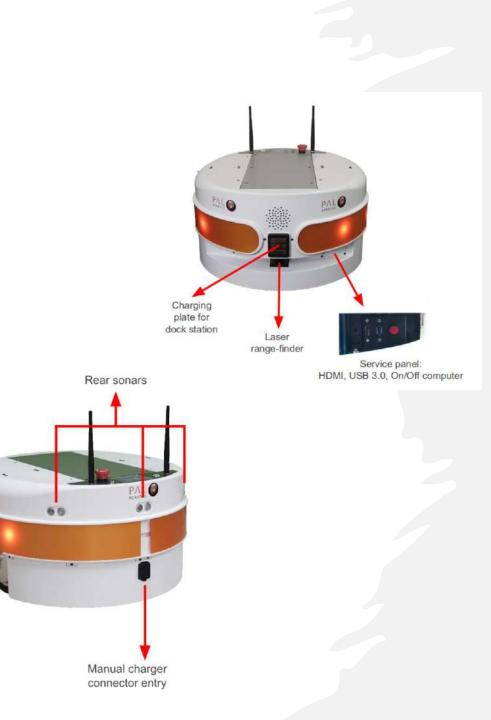
A robot that could be applied to different areas of robotics research, including human-robot interaction, robot control, robot sensing, etc., and be suitable for user studies.

REF: fp-robotics.com


REF: clearpathrobotics.com

TIAGo at first glance

TIAGO is a mobile manipulator designed to work in indoor environments. It has an extendable torso and an arm manipulator to grab tools and objects. Its sensor suite allows it to perform a wide range of perception, manipulation, and navigation tasks.


	Height	110 – 145 cm	
Dimensions	Weight	72 Kg	
	Base footprint	Ø 54 cm	
	Mobile base	2	
	Torso lift	1	
	Arm	4	
Degrees of freedom	Wrist	3	
	Head	2	
	Hey5 hand	19 (3 actuated)	
	PAL gripper	2	
Mobile base	Drive system	Differential	
MODIle Dase	Max speed	1 m/s	
Torso	Lift stroke	35 cm	
Arm	Payload	2 Kg	
Am	Reach	87 cm	
Electrical features	Battery	36 V, 20 Ah	
		Laser range-finder	
	Base	Sonars	
		IMU	
Sensors	Torso	Stereo microphones	
	Arm	Motors current feedback	
	Wrist	Force/Torque	
	Head RGB-D came		

Hardware - Mobile base

TIAGo's mobile base is provided with a differential drive mechanism and contains an onboard computer, batteries, power connector, laser-range finder, three rear sonars, a user panel, a service panel, and two WiFi networks to ensure wireless connectivity.

Hardware - Mobile base

Laser range-finder (2D lidar)

Located at the front of the base. This sensor measures distances in a horizontal plane. It is a valuable asset for navigation and mapping.

Sonars

These sensors are capable of measuring from low to mid-range distances. In robotics, ultrasound sensors are commonly used for local collision avoidance. Ultrasound sensors work by emitting a sound signal and measuring the reflection of the signal that returns to the sensor.

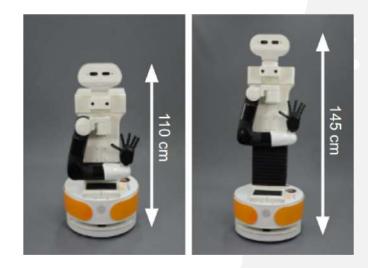
Inertial measurement unit (IMU)

This sensor unit is mounted at the center of TIAGo and can be used to monitor inertial forces and provide the attitude

Manufacturer	SICK	
Model	TIM561-205010	
Range	0.05 - 10 m	
Frequency	15 Hz	
Field of view	180°	
Step angle:	0.33°	

Manufacturer	Devantech	
Model	SFR05	
Frequency	40 kHz	
Measure distance	0.03 - 1 m	

Manufacturer	InvenSense	
Model	MPU-6050	
Gyroscope	3-axis	
Accelerometer	3-axis	


Hardware - Torso

TIAGo's torso is the structure that supports the robot's arm and head, and is equipped with an internal lifter mechanism that allows the user to change the height of the robot. Furthermore, it features an expansion panel and a laptop tray. The lifter is able to move at 50 mm/s and has a stroke of 350 mm.

Stereo microphones

There are two microphones that can be used to record audio and process it in order to perform tasks like speech recognition.

Hardware - Arm manipulator

TIAGo's arm is composed of four M90 modules and one 3 DoF wrist, M3D

Weight	10 Kg	T				
Payload	2.8 Kg					
Joints	7					
Onboard control modes	Modules	Position, velo	ocity and current	1		
Onboard control modes	Wrist	Position and velocity			Enco	ders (bits)
	Description	Reduction	Max speed [rpm]	Nominal torque [Nm]	Motor	Absolute
	1st module	100:1	18	39	12	12
Actuators	2nd module	100:1	18	39	12	12
	3rd module	100:1	22	22	12	12
	4th module	100:1	22	22	12	12
	Wrist 1st DoF	336:1	17	3	11	12
	Wrist 2nd DoF	336:1	17	5	11	13
	Wrist 3rd DoF	336:1	17	5	11	13

Force/torque sensor

TIAGo has a force/torque sensor integrated on the end-point of the wrist

Dhusical Space	Weight	Diameter	Height	
Physical Specs	0.0917 Kg	45 mm	15.7 mm	
	Fx, Fy	Fz	Tx, Ty	Tz
Sensing ranges	290 N	580 N	10 Nm	10 Nm
Resolution	1/8 N	1/8 N	1/376 Nm	1/752 Nm

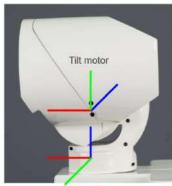


Hardware - Arm manipulator - End effector

TIAGo 's end-effector is one of the modular features of the robot. TIAGo can be used with three interchangeable end-effectors: the Hey5 hand, the PAL parallel gripper and the Schunk WSG32 industrial gripper.

and the second se
550 g
2 kg
Yes
34 mm
5 N
50 N
400 mm/s

Weight	800 g				
Payload	2 kg				
interchangeable fingers	Yes				
Actuators	Description	Reduction	Max speed [rpm]	Max torque [Nm]	Absolute encoder
	Left finger	193:1	55	2.5	12 bits
	Right finger	193:1	55	2.5	12 bits


Weight	720 g		
Payload	1 Kg		
Joints	19		0
	Description	Max speed [rpm]	Max torque [Nm]
Astustara	Thumb	32	0.23
Actuators	Index	32	0.23
	Middle+right+little	34	0.45

Hardware - Head

TIAGo's head is equipped with a pan-tilt mechanism, i.e. 2 DoF, and an RGB-D camera. Furthermore, on top of the head, there is a flat surface with mounting points to allow the user to add new sensors or equipment.

Pan motor

RGB-D camera

Manufacturer	Orbbec
Model	Astra S
Field of view	60° H, 49.5° V, 73° D
Interface	USB 2.0
Color stream modes	QVGA 320x240 @ 30 fps, VGA 640x480 @ 30 fps, 1280x960 @ 10 fps
Depth stream modes	QVGA 320x240 @ 30 fps, VGA 640x480 @ 30 fps, 160x120 @ 30 fps
Depth sensor range	0.4 - 2 m

Hardware - Onboard computer and processor

Onboard computer

Component	Description	
CPU	Intel i5 / i7	
RAM	8 / 16 GB	
Hard disk	250 / 500 GB SSD	
Wi-Fi	802.11 a/b/g/n/ac	
Bluetooth	Smart 4.0 Smart Read	

Development computer

Any computer supporting ROS (directly or through containers) could be easily integrated with TIAGo's onboard computer.

NVIDIA Jetson TX2

Suitable for implementing ML/DL/RL models

Hardware - Joystick

Joystick

The motions of the mobile base, torso, head, and opening/closing of the end-effector could be controlled using the joystick.

To control the arm manipulator (6 DoF of the end-effector) one should first run the WBC motion planner.

Software - Robot Operating System (ROS)

TIAGo is programmed based on ROS.

The comprehensive list of ROS packages used in the robot are classified into three categories:

- Packages belonging to the official ROS distribution melodic.
- Packages specifically developed by PAL Robotics, which are included in the company's own distribution, called ferrum.
- Packages developed by the customer.

Software - WebCommander

The WebCommander is a web page hosted by TIAGo. It can be accessed from any modern web browser that is able to connect to TIAGo. The WebCommander website contains visualizations of the state of TIAGo's hardware, applications, and installed libraries, as well as tools to configure elements of its behavior.

http://tiago-135c:8080 http://control:8080

Startup	alive_demo : Running	Stop	Show Log
Startup Extras	<pre>@arm_safe_shutdown : Running</pre>	Stop	Show Log
liagnostics	Change_controllers : Running	Stop	Show Log
oge	Charging_monitor : Running	Stop	Show Log
eneral Info	<pre>@collision_aware_fjt : Running</pre>	Stop	Show Log
ideo peech	<pre>@compressed_map_publisher : Running</pre>	Stop	Show Log
obot Demos	Computer_monitor_control : Running	Stop	Show Log
BC	edemo_buttons : Finished Application exited successfully		
mmands	deployer : Running	Stop	Show Log
ettings	diagnostic_aggregator : Running	Stop	Show Log
ovements	<pre>ediagnostic_reporter : Running</pre>	Stop	Show Log
ontrol Joint	<pre>embedded_networking_supervisor : Running</pre>	Stop	Show Log
etworking	emergency_button_trigger : Running	Stop	Show Log

Software - Manipulator's Motion planning/control

Movelt

Movelt is the most widely used software for robot manipulation. It is fully open source and free for industrial, commercial, and research use. By incorporating the latest advances in motion planning, manipulation, 3D perception, kinematics, control and navigation, Movelt is state of the art software for mobile manipulation.

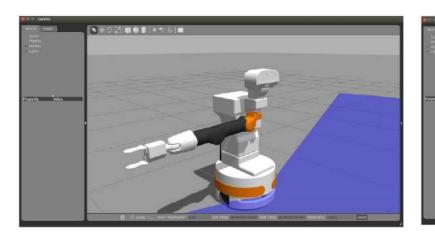
Whole-Body Control (WBC)

WBC is PAL's implementation of the Stack of Tasks. It includes a hierarchical quadratic solver, running at 100 Hz, able to accomplish different tasks with different priorities assigned to each. In order to accomplish the tasks, the WBC takes control of all TIAGO 's upper-body joints. WBC considers all joint limits as well as self-collision avoidance when planning motions for the robot.

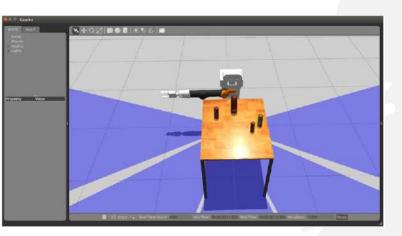
PlayMotion

time.

TIAGO is provided with a motions engine to play back predefined motions involving joints of the upper body. A default library with several motions is provided, and the user can add new motions that can be played at any


Software - Gazebo simulator

TIAGO has a ROS-based Gazebo simulator. When installing TIAGO's workspace on the development computer, we can run Gazebo simulations of TIAGO. Three different simulation worlds are provided with TIAGO.


Empty world

Office world

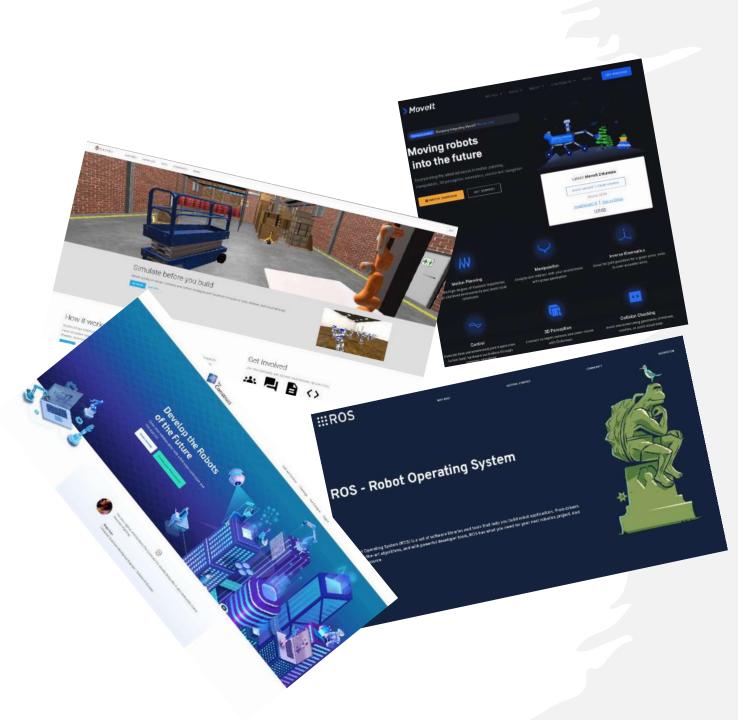
Table with objects world

How to learn TIAGo?

ROS

https://ros.org/ https://www.theconstructsim.com/

Gazebo


https://staging.gazebosim.org/home

Movelt

https://moveit.ros.org/

TIAGo

http://wiki.ros.org/Robots/TIAGo/Tutorials TIAGo Handbook

TIAGo for research

So far, TIAGo has been used in/for,

- 2/3 Ph.D. projects, ٠
- Several Master projects, ۲
- 2 (postdoc) researcher's work, ٠
- Different user studies (making videos, data collection), ۲

eknologimäned hos Omsorg+

the thermal camer

Monitoring user using the depth sensor

its' positions it

ing from thermal image to dept age using Homography matr $\begin{bmatrix} u \\ v \end{bmatrix}^d = H^d_{th} \begin{bmatrix} u \\ v \end{bmatrix}^T$

- Robot demos, ۲
- Teaching purposes (IN3140) ٠

Thank you!