Faculty of Mathematics and Natural Sciences

FPGA motor control, why and how?

۵.		Msgs	
4	mclk	1	
4	• reset	0	
•	field_direction	10'd511	866 865 864 863 862 861 860 859 858 857 856 855 854 853 852 851 850 849 848 847 846 845 844 843 842 841 840 839 838 857 836 835 834 833 832 8
.	field_strength	10'd511	<u></u>
4	hiA	0	
4	loA	0	$(\mathbf{A}_{\mathcal{A}}) = \mathbf{A}_{\mathcal{A}} $
4	hiB	0	
4	loB	0	
4	hiC	0	
4	loC	0	
4	current_state	off	
-	next_state	phase2	
4	phase_order	AnBC	ApBC
•	phase_counts	{12'd1323}	
.	counter	12'd1024	
₩.	• Now	73969.43 us	16000 us 17000 us
ê 🎸	Cursor 1	39242.915 us	
\leq			

UNIVERSITY OF OSLO Yngve Hafting Cand.Scient

Department of Informatics, Robotics & Intelligent systems group

Overview

Part 1 : High level overview

- Why motor control?
- Why FPGA?
- General motor driver system

Part 2: Motor Control basics

- commutation of three phase motors
- Sensorless principles
- Field oriented control
- Slow speed challenges with FOC UNIVERSITY OF OSLO

Part 3: Output control

- Pulse modulation techniques
 - Sinusoidal PWM
 - Space vector modulation
- Challenges with SPWM and SVPWM
- Modulation summary

Part 4: Motor control algorithm status

• What is left to explore

Why

Stepping into the real world your robot should come with

Quick reflexes:

- Low level control that
 - react swiftly
 - respond when parameters cannot be met
 - Accurate readout
- Fast link between high and low level control
 - Few steps
 - not a multi-branch tree
 - Few wires
 - Easier to build & repair

Lasting batteries

Characteristy

- Efficient controllers
 - Light weight body

Why FPGA system for control? µController can do all...

Comr

• IO galore:

- Control N motor output (achievable -> 10+)
- Sensor input not fixed
 - Input should synchronize with PWM output
 - has to be done at a low level.
 - Input could be more than one AD/motor
- Wire chaos
 - Reduce the number of circuit boards in large des.
 - 12-DOF ODR Robot: 6 μC, 3 comm-boards then F
- Faster and more efficient control loops
- Current control
 - If voltage is high enough:
 - Does it make sense to do PWM output sequentially?
 - Power design is easier, because we decide worst case curre
- Test different algorithms using the same physical HW.
 - To what degree can and should motor parameters be learned?
 - We know that ML *has* been used, but not how well everything compares.

UNIVERSITY OF OSLO

Why FPGA system for control? µController can do all...

- IO galore:
 - Control N motor output (achievable -> 10+)
 - Sensor input not fixed
 - Input should synchronize with PWM output
 - has to be done at a low level.
 - Input could be more than one AD/motor
- Wire chaos
 - *Reduce the number of circuit boards in large designs*
 - 12-DOF ODR Robot: 6 µC, 3 comm-boards then PC
- Faster and more efficient control loops
- Current control
 - If voltage is high enough:
 - Does it make sense to do PWM output sequentially?
 - Power design is easier, because we decide worst case current
- Test different algorithms using the same physical HW.
 - To what degree can and should motor parameters be learned?
 - We know that ML *has* been used, but not how well everything compares.

General controller => What to do with it..

- All tasks in the digital and high level domain *can* be done in an FPGA.
- Creating everything all at once is too much
- Tasks
 - Create an inverter that can
 - talk to the observer
 - test all PWM algorithms at any rate.
 - be reprogrammed
 - Create observer that can
 - Utilize different AD and sensor combinations
 - Use AI/ML or Heuristics (LUTs) to provide motor state
 - Create a system that can be used to demonstrate benefits and pitfalls by using FPGA for Robot control.

Part 2 Motor control basics

- Principles for the 3 phase motor
- Possible states in motor control
- Sensorless measurements
- Field oriented control
- Challenges at slow speed

3 phase motor principles

- •Motor principle
 - (more poles)..
- •3 phase motor diagram
 - Wye is «considered» easiest to explain,
 - Texts often stop there...
- Inverter drive circuit

UNIVERSITY OF OSLO

- 6 transistors to apply PWM to:
- Outputs are either high, low or disabled
 - Hi+ Lo + (Lo)
 - Lo + Hi + (Hi)

Y «Wye» and «Delta» not connected at all = stepper motor

Wye vs Delta (no center tap)

A High, B low, (C is off)

• Wye:

- Current flows through L1 and L2
- Current is $\frac{V}{2R_L}$
 - I_{L2} is $-\frac{V}{2R_L}$ if we use to-center as positive direction

• Delta

• Currents flows through all solenoids:

•
$$I_{L1} = I_{AB} = \frac{V}{R_L}$$

• $I_{L2} = I_{BC} = -\frac{V}{2R_L}$
• $I_{L3} = I_{CA} = -\frac{V}{2R_L}$

L2

L3勹

A high B and C low

• Wye

• Current flows through all solenoids

•
$$I_{L1} = \frac{V}{1,5R_L} = \frac{2V}{3R_L}$$

• $I_{L2} = -\frac{I_{L1}}{2} = -\frac{V}{3R_L}$

•
$$I_{L3} = -\frac{I_{L1}}{2} = -\frac{V}{3R_L}$$

Delta

•
$$I_{L1} = \frac{V}{R_L}$$

• $I_{L2} = 0$
• $I_{L3} = -\frac{V}{R_L}$

States for motor control

Wye connection, All current states

UNIVERSITY OF OSLO

States for motor control

Delta-connection, all 12 states

Ab bC AbC abC aC aBC lll lll000 aВ Bc ABc Abc aBc Ac QQQQ000 0 0

•Ab	•aB
•AbC	•aBc
•bC	•Bc
•abC	•ABc
•aC	•Ac
•aBC	•Abc

In this scheme...

•Wye motor will lead by 30 degrees on a Delta motor, both turning same direction

• Ex

- Wye has
 - 2 coils active at Ab
 - 3 coils active at AbC
 - ...
- Delta has
 - 3 coils active at Ab
 - 2 coils active at Abc
 - Same as Ab for Wye Page 13

UNIVERSITY OF OSLO

Sensors and sensorless

- "Sensor" based systems generally use a rotational or positional encoder (Quadrature or absolute encoder)
- Sensorless systems use a number of AD converters, that can be found on various locations in the inverter driver circuitry
 - Measure Voltages across
 - Shunt resistors for output
 - Two or three phases
 - Low or high side shunt resistor
 - for two or three phases
 - Low or high side common shunt resistor
 - Current supply voltage
 - Measurement can be performed
 - When pulsing
 - To help determine power and torque output
 - When not pulsing
 - To find back EMF to determine position and
- To help determine power and torque
 - During transitions is not a good idea (synchronize!)

Field oriented control (FOC)

- The goal is either to control motor
 - speed
 - position
 - torque
 - acceleration (traction control)
- FOC is achieved if we can set strength and direction of the magnetic field in the motor.
- Vector control using Clarke Park
 - Uses AD-measurements to find the strength and direction of the motor currents
 - Back EMF measurement is only possible at speed
 - Transforms vectors to radial and tangential values
 - Input desired tangential values to achieve torque (current)
 - Use PID control to make sure radial value is 0 and tangential output becomes as desired

• Transform back to get output values

Clark-Park transformation and PI regulation

- 1: Transform all signals to xy plane (=> We go from 3 signals to 2)
- 2: Transform to radial/ tangent plane
- 3: PI regulate so that radial component is 0 and tangential current is proportional to the motor torque.
- 4: Reverse Transform back to xy
- 5: Reverse transform back to three phase to get PWM timing.
- Makes torque calculations easy.
- PI will smooth out any imperfections since we use current feedback
 - *Reactive, not predictive...*

$$\begin{bmatrix} i_{\alpha} \\ i_{\beta} \end{bmatrix} = \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} i_{\alpha} \\ i_{b} \\ i_{c} \end{bmatrix}$$

$$\begin{bmatrix} I_d \\ I_q \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} i_\alpha \\ i_\beta \end{bmatrix}$$

Is it even possible to «rotate» a field in stator?

- Feeding a «perfect circle» (PWM' based)
 - Some «field-directions» are weak
 - Others are much stronger
 - Independent of motor position
 - you can feel this...
 - Current draw is small when weak
 - Motor acting as a transformer?
 - Cogging Torque..?

=>

- Will toggling between strong vectors always be a better option?
 - At what rate..? (since this is what we already do)
 - Adding noise seems to be used (ODR, Zero motors)
- Addressed in paper «Cogging Torque Reduction in Brushless Motors by a Nonlinear Control Technique», P. Dini and S.Saponara 2019.

Part 3: Output control, how to achieve an output vector

How to achieve an output vector

- Pulse width modulation techniques
 - Sinusoidal PWM (SPWM)
 - Space vector modulation (SVPWM)
- Motor currents in SPWM and SVPWM

Pulse Width Modulation

- •Desired output
- •PWM output
 - Idea
 - Sinus modulated (SPWM)

Here: Max duty cycle at 30%

Sinusoidal PWM «SPWM»

Carrier based modulation

- Most PWM schemes are carrier based
 - Suited for analog comparators
 - Digitally we never create a carrier signal, but calculate PWM duty cycle directly (equivalent).

Power electronics handbook 4th edition, Muhammad H. Rashid 2018 ISBN : 0-12-811408-8, Butterworth-Heinemann

(Online available through Oria)

Fig. 11.18 The three-phase VSI. Ideal waveforms for the SPWM (si13_e, si14_e): (A) carrier and modulating signals, (B) switch S1 state, (C) switch S3 state, (D) ac output voltage, (E) ac output voltage spectrum, (F) ac output current, (G) dc Page 20 current, (H) dc current spectrum, (I) switch S1 current, and (J) diode D1 current.

Pulse organization, Wye

Note that

UNIVERSITY OF OSLO

• You can't have current through one coil alone.

12

• Thus...

- Directing current through three coils..
 - Does not double the total current
- Would it be an idea...
 - to put one before the other
 - We can do this now...
 - No-one does this (..?)

Space vector modulation -SVPWM (SVM)

The most used vector modulation

- Sinusoidal PWM:
 - Either high or low for each phase.
 - Use all 12 commutation states (and Hi-Z for 0)

• SVPWM:

- Full voltage swing for all phases
 - Uses only 6 commutation states, never the weaker ones
 - all high or all low for 0 output.

Fig.10 Generation of voltage Space Vector by SVM

SPACE VECTOR MODULATION – An Introduction

SVPWM voltages and current

Is it really the way to go?

- All phases @ same voltage => No current
- Wye: Coil B pulls in two directions
 - All within the same PWM pulse
 - How can this make sense?
 - Neglected :
 - coil resistance
 - Ideal solenoids doesnt have resistance
 - (it is low but not 0)
 - magnets being heated
- Delta: Not an issue
- All signals are mirrored within one period
 - The same current should is achieveable using switching only one phase (B) from high to low.
 - This constraints timing to avoid short circuit

• Note: The exact view here is not the combination of three sinus values.

UNIVERSITY OF OSLO

Currents in SVM and SPWM schemes, ignoring inductance (L)

Modulations summary

Summary from previous page

- SVPWM goes rail to rail , but has to pause in the middle
- SVPWM on a Wye connection cause current turning within PWM cycle
 - => added motor resistance loss
 - => added heat in the permanent magnets
 - Often neglected in calculations
- Center-aligned SPWM requires more complex calculations since time is spent at ½ or 2/3 current (The other schemes can be made more powerful).
- «B then C» not suited(?) for Delta connection.

•The impact on efficiency of using different modulation schemes for different motors could be tested physically

Motor Control algorithm status of today..?

Motor Control algorithm status of today..?

	Carrie	Carrier generation					
Pulse modulation	SVPWM	SPWM	Variants	PDM?			
	th	third harmonic injection					
Motor configuration	Wye	Delta Sto	epper otors?				
«Sensorless» sensing	High or low side phase shunt	High or low side common shunt	phase curre shunt	ent phase voltage (EMF)			
	motor hall	rotational					
Position sensors	sensors	encoders					
observer circuitry	observer calculates status depending on sensors, hysteresis considerations etc						
	output: position (angle), speed, currents / voltages						
user communication	translate to control related values (Force torque/ etc)						
	User input and (PID) control						
	translate force or speed to current (assumed tangential)						
	input: desired Torque/force (always assumed tangential)						
Low level motorControl	Clark-Park convert three phase EMF-current to XY plane						
	transformation	transformation convert EMF-current to radial/tangenti					
	(Direct-	Direct- PI control of tangential (\propto F) and					
	quadrature-zero	quadrature-zero radial component (set to (
	transformation,	transformation, <u>convert radial/tangential currents to XY pla</u>					
	DQZ)	DQ2 convert XY plane currents to three phase					
	Convert ci	Convert currents to pulse length = Pulse modulation					

Motor Control algorithm status of today..?

	Carrier generation				Low from one incluster for driver high	pulse lengths?
Pulse modulation	SVPWM	SPWM	Variants PD	M?	frequencies better for driver, high	IS PDM possible to achieve while maintaining
	third harmonic injection				Will affect measurment options	good measurments and regularity?
					May require entirely different pulse	Mello de la companya
Motor configuration	Wye Delta Stepper		Will a stepper motor configuration have less			
					Calculation	loss due to individual con actuation?
	High or low side	High or low side	phase current	phase voltage	Depends on power driver circuit configuration	Which measurement schemes will allow us to
«Sensorless» sensing	phase shunt	common shunt	shunt	(EMF)	Timing must be coordinated with PWM	have the best possible control system?
	motor hall	rotational		(,	Hall sensors and EMF may have hysteresis	(will affect PCB layout)
Position sensors	sensors	encoders			(direction, speed, pulses?)	
			1			Do we need to calculate hysteresis for control
	observer calculates status depending on sensors, hysteresis considerations etc					purposes when using encoder data?
observer circuitry				ions etc		Should hysteresis be learnt once, or
r						continously?
	output: position (angle), speed, currents / voltages translate to control related values (Force torque/ etc)			ages		Is MI desireable for calculating hysteresis
user communication				e/ etc)		
	User inp	out and (PID) contro	ol			Can we use ML to learn motor wear?
	translate force or speed to current (assumed tangential) input: desired Torque/force (always assumed tangential)			gential)	Matrix multiplication (float multiplication)	
				gential)	Matrix multiplication (incl 4 sinus calc)	
Low lovel materControl	Clark-Park	convert three p	hase EMF-curre	nt to XY plane	PI calculation (multiplication / addition)	Should we do without clark-park using
	transformation	convert EMF-	current to radial	/ tangential		digital angles? (0-360 = 0-xFF)
	(Direct-	PI contro	of tangential (∘	<pre>< F) and</pre>	Matrix multiplication (incl 6 sinus calculations,	Con use do with a single DID controller?
	quadrature-zero	radial c	omponent (set	to 0)	float addition and float multiplication)	Can we do with a single PID controller?
	transformation,	convert radial/t	angential currer	nts to XY plane		
	DQZ)	convert XY pla	ane currents to t	three phase		
	Convert cu	urrents to pulse ler	igth = Pulse mod	dulation		

Thanks for watching!

Page 28

Llow con we doto maine entired from you on our