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Agenda

« Why | did this

e Papers

¢ Some “non-science” experiences

« Software based research is still research

* The dataset part — variations of ML models

« The simulation part — Reinforcement learning
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: Datascience
: Supervised learning
: Unsupervised learning

Papers

: Reinforcement learning

: Explainable Al
Paper I: Building and analysing a labelled measure while drilling dataset Paper V: Can we trust the machine learning based geotechnical model?
from 15 hard rock tunnels in norway. . T.F. Hansen
T.F. Hansen, Z. Liu, J. Torressen Proceedings of the conference 5th ICITG, 2024, Colorado School of Mines, USA.
In review in journal “Tunneling and Underground Space Technology”, 2024. Public proceedings 30.06.2024.

Preprint at SSRN:http://dx.doi.org/10.2139/ssrn.4729646
Paper VI: Unsupervised machine learning for data-driven classification

Paper II: Improving face decisions in tunnelling by machine learningbased of rock mass using drilling data.
MWD analysis. ‘ T.F. Hansen, A. Aarset
‘ T. F. Hansen, G. H. Erharter, T. Marcher, Z. Liu, and J. Tgrresen In review in journal "Rock mechanics and rock engineering". Preprint arXiv:http:

Geomechanics and Tunnelling, vol. 15, no. 2, pp. 222-231, 2022. //arxiv.org/abs/2403.10404.
DOI:10.1002/geot.202100070
Paper VII: Reinforcement learning based process optimization and

Paper lll: Predicting rock type from mwd tunnel data using a . strategy development in conventional tunnelling.
reproducible ml-modelling process. G.H. Erharter, T.F. Hansen, Z. Liu, T. Marcher

’ T.F. Hansen, Z. Liu, J. T@rressen Automation in Construction, volume 127, 2021.
“Tunneling and Underground Space Technology”, 2024. DOI:10.1016/j.autcon.2021.103701

DOI: https://doi-org./10.1016/j.tust.2024.105843
Paper VIII: TunnRL-CC: A computational framework for smart TBM

Paper IV: A comparative study on machine learning approaches for rock cutter changing.
mass classification using drilling data. . T.F. Hansen, G. Erharter, T. Marcher

‘ T.F. Hansen, G.H. Erharter, Z. Liu, J. Torresen “Automation in construction”, volume 165, 2024.
In review in journal “Applied computing and geosciences”, 2024. Preprint DOI: 10.1016/j.autcon.2024.105505.

arXiv:http://arxiv.org/abs/2403.10404.
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Papers during Phd

Papers written during the PhD project, not included in the thesis
Paper: International distribution and development of rock mass
classification - a review

G. Erharter, N. Bar, T.F. Hansen, S. Jain, T. Marcher

Submit for review to the journal "Rock mechanics and rock engineering"..

Paper: A 2023 perspective on Rock Mass Classification Systems

G. Erharter, T.F. Hansen, S. Qj, N. Bar, T. Marcher

Conference: 15th ISRM Congress 2023 & 72nd Geomechanics Colloquium,
Salzburg, Austria

Paper: Towards optimized TBM cutter changing policies with
reinforcement learning

G. Erharter, T.F. Hansen

Geomechanics and Tunnelling, vol. 15, no. 2, pp. 665-670, 2022.
DOl:https://doi.org/10.1002/geot.202200032

Github repositories with code supporting the papers

e https://github.com/tfha/MWD-dataset

e https://github.com/tfha/ML-MWD-prediction-tabular
e https://github.com/tfha/ML-MWD-prediction-rocktype
e https://github.com/tfha/ML-MWD-prediction-images
e https://github.com/tfha/ML-MWD-clusterings

e https://github.com/TunnRL/TunnRL TBM maintenance
15.06.2024

Paper: Analysis of water ingress, grouting effort, and pore pressure reduction
caused by hard rock tunnels in the Oslo region

J. Langford, K. Holmgy, T.F. Hansen, K.G. Holter, E. Stein

Tunnelling and Underground Space Technology incorporating Trenchless Technology
Research, vol. 130, 2022.

DOl:https://doi.org/10.1016/j.tust.2022.104762

Paper: Introducing Reinforcement Learning to Tunneling

G. Erharter, T.F. Hansen, Z. Liu, T. Marcher

Conference: International conference on Computational methods and information
models in tunnelling, Bochum, Germany, 2022.

Paper: Norwegian tunnel excavation: Increasing digitalisation in all
operations

J.LKY. Chiu, T.F. Hansen, T. Wetlesen

Geomechanics and Tunnelling, vol. 15, no. 2, pp. 182-189, 2022.
DOI:https://doi.org/10.1002/geot.202100072
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Be nice with the laptop

In many ways, the field of machine learning can be said to be just as close to HPC computing (with its
focus on hardware and heavy computation) as classic software development. Like HPC workloads,
machine learning workloads often will benefit from faster execution and quicker experimentation when
running on an HPC machine.

These features make an HPC a better choice than your local laptop for ML training.

« Aremote HPC machine typically have more cores and a faster CPU than your laptop. More cores let
you run code in parallelization faster. If your progress bar reach 1% done after 1 hour, you know
what to do.

 Efficient cooling system. Massive ML training is not good for your laptop. Listen to the fan and feel
the temperature # . Have some empathy with your computer.

« More memory. Memory is important, especially in training neural networks with millions of
parameters that need to be stored. Too little memory will crash your runs and freeze your computer.

* An HPC machine might have one or several strong GPU's with lots of memory. These are the go-to
machines for computer vision tasks and NLP. For images larger than 10x10 pixels, this will take
forever without a GPU.

« Training on an HPC also keeps your laptop ready to do other work (and not to break down . .

15.06.2024



UiO ¢ University of Oslo

Docker is your friend

The biggest problem, though, is to successfully get the dependencies, the
python version, and the tools you have installed ++, so you actually can
run your script. If you have a simple script and only use a Numpy
dependency, this might work, but ML-training scripts are not like that. To
take advantage of a cluster for machine learning training, you'll need to
ensure your development environment is portable and training is
reproducible on an HPC.

The solution to your problems and to run ML training in an efficient and

less nerve-breaking way, you should containerize your code and then run
it on the remote. Docker is your friend.

15.06.2024
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Code academy description — HPC + docker for ML
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My coding journey

mbine lab
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Dataset
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Dataset
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ML-
based

science

The principles and
pipeline in the
experimentation process
for machine learning are
presented in an online
public presentation:

https://prezi.com/view/chlJ
8Djt4GKjeAdFiGvAl/

15.06.2024

Objeﬁtisﬁ Description of process
- olm
W ol

Code quality | This study aims to verify the hypothesis that rock types can be predicted using a trained
machine-learning model applied to a labelled MWD dataset. The code serves as the
detailed blueprint for this experiment; therefore, it must be understandable, clean, and
well-structured. Code is read more often than it is written. We endeavoured to follow the
main principles outlined by Wilson et al. [19], [20] and Martin [33]. We used meaningful
variable names, modularised the code, used type annotations in Python to clarify the
format of inputs and outputs, and provided documentation for each function. We used the
industry standard auto-formatter, Black [34] to increase the code's readability and
recognizability. We also set up test functions to detect errors, thus ensuring the quality of
our experimentation and illustrating how a function operates.

Version We organised a well-structured project and regularly committed the code using the version

controlling control system git to a private GitHub repository (accessible to reviewers), which will be

code and made public upon the paper's acceptance. The dataset (model ready csv-files) was version-

dataset tracked using the Data Version Control (DVC) system [35] and quality-controlled while
input-reading through Pandera [23] and shared on the scientific platform Zenodo [36].

Controlling We leveraged Poetry [37], an environment and package handling system, to manage

programming | dependencies. Poetry automatically generates a lock file describing all packages and their

environment | corresponding versions. The Python version used in this project was specified in a .python-
version file and managed using the Pyenv tool [38], simplifying the process of downloading
and switching between Python versions. Notable differences exist between Python
versions, such as Python 3.9 (introduction of match-case statements), Python 3.10
(advanced type annotations), and Python 3.11 (performance enhancements), underscoring
the importance of this process.

Configuration | Configuration values were controlled and type-parsed with Pydantic (and enhanced with

of parameters | tab completion) [35]. Experiment results were thoroughly organised and saved for all
experiments using the Hydra [39] and MLflow [40] systems. Hydra helps avoid the pitfall
of embedding "magic numbers" within the code and enables swift experimentation
prototyping from the terminal.

Experiment MLflow gives you an overview and a log of all experiments with results in a clean web-

tracking based view. Each model step (finding pipeline, hyperparameter optimisation, evaluation,
final training) was grouped in experiments in Mlflow for easy comparison of experiment
performance.

Orchestrating | In our research, we integrated Hydra with GNU Make [41], a widely used automation tool,

experiments | to execute scientific experiments efficiently. Hydra manages and organises diverse
experiment configurations, enabling flexible and scalable setups. GNU Make, encapsulated
in a Makefile, orchestrates these experiments, ensuring reproducibility and efficiency. This
methodology not only streamlines the experiment process but also facilitates ease of
replication for other researchers, embodying the principles of open and reproducible
science.

Control Seed values were established to control the randomness in data splitting and algorithms.
randomness | Unless clearly stated, seeding has been used in all experiments to be able to compare results.
However, seeding was regularly turned off to explore the spread of results.

Control Employing all the processes mentioned above enables the reproducibility of our research
operating results in nearly all instances, provided the same dataset is used. However, an exception

could be made when the hardware controlling software, such as CPU and GPU drivers,

1. Cleaned raw dataset

l

2. QA dataset
Duplicate check
Qutlier Removal

l

3. Controlled dataset

l

4. Split data into training and testing sets
0.75/

5. Train dataset

l

6. Feature selection
Feature engineering

l

7. Explore performance boundaries
Dummy model, simple-, complex models

l 0.25

8. Find the best pipeline including /\
preprocessing-steps and ML-algorithm

using default hyperparameters. New combination

Train with k-fold cross-validation ‘\/
set with chosen pipeline, Until converged metric
11. Retrain pipeline on training set with best hyperparameters

ie. repeatedly splitting in train and validation ‘\/
10. Select best hyperparameters for pipeline
\‘ /
14. Evaluate performance of final model

9. Train chosen pipeline for hyperparameter optimization
with hyperparameters given from Optuna
Perform k-fold cross-validation on training
for a number of optimization iterations
l \ 4
13. Predict labels for testing set using retrained model
using well considered metrics

12. Test dataset
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The power of smart optimisation
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Data
samples

Architecture — supervised prediction
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Preprocessing MWD-sensor data to images
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True label
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Supervised prediction models

Amphibolittic_gneiss 0.27|0.00|0.01|0.00|0.01

Augen_gneiss 0.21{0.00|0.00|0.000.00

Blackshale 0.01)0.10|0.00/0.05| 0.00

Drammensgranite 0.0210.00(0.01(0.00|0.02

Elnes_lime_shale 0.90

Granittic_gneiss 40.09| 0.02| 0.00 | 0.00

Hagaberg_shale 40.00|0.00|0.20|0.00

Hornfels 4 0.00| 0.00| 0.00|0.02

Huk_limestone -0.00|0.00(0.120.00

Rhomb_porphyry 40.00|0.00| 0.01}0.02

Predicted label
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Bal. acc.: 0.86 | Acc.:0.85 | Avg. precision: 0.78 | F1: 0.81
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Figure 7. Confusion matrix for a Voting Classifier optinused for recall and trained with 5-fold eross-validation.
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Explainability
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Explainability

15.06.2024

fix)=0.97 fix)=10.99

Owverburden _ FPNormVar -
FPNormMedian ' RPRMSVar -
WFNormMedian . +0.08 TunnelWidth .

17 other features - 17 other features _

' 04 06 08 10 04 06 08 10

0.2 0.2
E[fiX} D.086 Elf{X)= 0.066

Fig. 3. Waterfall plots of Shapley values for the three most important features in
predicting a sample of a (Q-class A, and b Q-class E2.

fix)=0.986 flx)=0.945
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15 other features _ 15 other features -

— e i L —

06 0.8 1.0 0.4 0.6 0.8 10

0.2 0.2
E[fiX]}= 0.086 E[fiX)}=0.083

Fig. 4. Waterfall plots of Shapley values for the three most important features in
predicting a sample of a rock type Blackshale, and b rock type Hornfels.
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Explainability
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Fig. 7. Partial dependency plots for four significant features identifying rocktype, ex-
amplified for Hornfels.
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Table 2: Summary of clustering results for four different feature sets, grouped by feature

UiO 2 University of Oslo

Clustering

sets. Scores for default algorithm parameters in parenthesis

Id Feature Num. Dim. Cluster Num. Num. dim.  Num. not Gini

sel features red. alg, clusters red. clustersd index
alg, camp. samples

0 all 50 wmap  hdbsean  9(056) 12(2) 0(6140) 0.5(0.6)

1 all 50 wmap hdbscan 0 15 23 0.5

2 mrrwed 48 umap aggl. clust. [ 7 0 0.55

3 i 48 umap  aggl. clust. T(6) 6(2) 00y 0.57(0.24)

A mrwed 48 umap hdbscan 1 12 23 0.66

5 mmw 48 umap kmeans T 10 0 0.2

6 mwd 48 umap kmeans 3 4 0 0.36

7 mrwed 48 umap hdbscan 11(838) 3(2) 55(6053) 0.62(0.63)

8 mwid 48 WA hdbscan 13 12 1195 .44

g mwil 48 peca kmeans 10 2 0 0.22

10 mwil 418 umap hdbscan 6 2 22 0.69

11 mwd 48 peca hdbscan 3 5 1842 0.59

12 mwd 48 None hdbscan 3 1 0.67

13 mwd_rock 30 pea kmeans 6 2 ] 0.22

14 mwd_rock an umap hedbscan 11 | 175 0,68

15 mwid_rock 30 uImap hdbsean 9 15 1014 0.64

16  mwd_median 8 wnap hdbzean 6 1 23 0.74

15.06.2024
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RL — the full tunnel cycle

Input 2D 2D 2D Fully Fully
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output
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Fig. 5. Schematic representation of the DQN agent’s ANN architecture. Note the visualization of rockmass-matrix and the support-matrix to the left. The numbers
below each layer are the respective shape of the layer’s weights. Dashed connection lines between layers are only for illustrational purposes. Symbols at the output
layer represent the eight possible actions (ordered as in Table 3) that are chosen via Q-values by the agent.
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RL — the full tunnel cycle

— ot excavated
m— wWeak rock
= stronger rock

geological section

random walk

1] 250 500 750 1000 1250 1500 1750 2000
tunnellength [dm]

Fig. 4. Top row: an exemplary unique geological section, where brown indicates weak (gt1) and blue stronger rock (gt2). The positions of the top heading and bench
are at 165.0 m and 125.0 m respectively. Bottom row: the random walk that is used to generate the geological section. Values above 0.5 are converted to gt2 and
below to gtl. Note that the x-axis is the tunnel length in decimeters which corresponds to the number of datapoints of the random walk.
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RL — predictive maintenance
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Wearing down the cutter disks

T |F

Today’s maintenance
decisions: human
subjectiveness
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TunnRL - CC — An automated decision system

goal computational framework

TunnRL-CC
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Agent performance

Algorithm Maximum | Episode Number of | Avg. AVE. Avg.

Reward num max | trials for the | replaced | moved broken
reward algorithm cutters cutters | cutters

TD3 (off) 945 1264 515 0.028 1.66 1.348

DDPG (off) 879 400 393 0.002 2.13 1.346

A2C (on) 650 3448 324 29.8 11.2 0

PPO (on) 637 529 293 35.04 1.23 0.775

SAC (on) 205 468 41 0.802 34.3 0.14

TD3 — Twin Delayed DDPG

(DDPG — Deep deterministic
policy gradient)

15.06.2024
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Excavating 540 m tunnel (1 stroke = 1.8 m)
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