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Agenda

• Why I did this
• Papers
• Some “non-science” experiences
• Software based research is still research
• The dataset part – variations of ML models
• The simulation part – Reinforcement learning
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Papers
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Paper I: Building and analysing a labelled measure while drilling dataset
from 15 hard rock tunnels in norway.
T.F. Hansen, Z. Liu, J. Torressen
In review in journal “Tunneling and Underground Space Technology”, 2024.
Preprint at SSRN:http://dx.doi.org/10.2139/ssrn.4729646

Paper II: Improving face decisions in tunnelling by machine learningbased
MWD analysis.
T. F. Hansen, G. H. Erharter, T. Marcher, Z. Liu, and J. Tørresen
Geomechanics and Tunnelling, vol. 15, no. 2, pp. 222–231, 2022.
DOI:10.1002/geot.202100070

Paper III: Predicting rock type from mwd tunnel data using a
reproducible ml-modelling process.
T.F. Hansen, Z. Liu, J. Tørressen
“Tunneling and Underground Space Technology”, 2024.
DOI: https://doi-org./10.1016/j.tust.2024.105843

Paper IV: A comparative study on machine learning approaches for rock
mass classification using drilling data.
T.F. Hansen, G.H. Erharter, Z. Liu, J. Torresen
In review in journal “Applied computing and geosciences”, 2024. Preprint
arXiv:http://arxiv.org/abs/2403.10404.

Paper V: Can we trust the machine learning based geotechnical model?
T.F. Hansen
Proceedings of the conference 5th ICITG, 2024, Colorado School of Mines, USA.
Public proceedings 30.06.2024.

Paper VI: Unsupervised machine learning for data-driven classification
of rock mass using drilling data.
T.F. Hansen, A. Aarset
In review in journal "Rock mechanics and rock engineering". Preprint arXiv:http:
//arxiv.org/abs/2403.10404.

Paper VII: Reinforcement learning based process optimization and
strategy development in conventional tunnelling.
G.H. Erharter, T.F. Hansen, Z. Liu, T. Marcher
Automation in Construction, volume 127, 2021.
DOI:10.1016/j.autcon.2021.103701

Paper VIII: TunnRL-CC: A computational framework for smart TBM
cutter changing.
T.F. Hansen, G. Erharter, T. Marcher
“Automation in construction”, volume 165, 2024.
DOI: 10.1016/j.autcon.2024.105505.

: Datascience

: Supervised learning

: Unsupervised learning

: Reinforcement learning

: Explainable AI



Papers during Phd
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Papers written during the PhD project, not included in the thesis
Paper: International distribution and development of rock mass
classification - a review
G. Erharter, N. Bar, T.F. Hansen, S. Jain, T. Marcher
Submit for review to the journal "Rock mechanics and rock engineering"..

Paper: A 2023 perspective on Rock Mass Classification Systems
G. Erharter, T.F. Hansen, S. Qi, N. Bar, T. Marcher
Conference: 15th ISRM Congress 2023 & 72nd Geomechanics Colloquium,
Salzburg, Austria

Paper: Towards optimized TBM cutter changing policies with
reinforcement learning
G. Erharter, T.F. Hansen
Geomechanics and Tunnelling, vol. 15, no. 2, pp. 665-670, 2022.
DOI:https://doi.org/10.1002/geot.202200032

Paper: Analysis of water ingress, grouting effort, and pore pressure reduction
caused by hard rock tunnels in the Oslo region
J. Langford, K. Holmøy, T.F. Hansen, K.G. Holter, E. Stein
Tunnelling and Underground Space Technology incorporating Trenchless Technology
Research, vol. 130, 2022.
DOI:https://doi.org/10.1016/j.tust.2022.104762

Paper: Introducing Reinforcement Learning to Tunneling
G. Erharter, T.F. Hansen, Z. Liu, T. Marcher
Conference: International conference on Computational methods and information
models in tunnelling, Bochum, Germany, 2022.

Paper: Norwegian tunnel excavation: Increasing digitalisation in all
operations
J.K.Y. Chiu, T.F. Hansen, T. Wetlesen
Geomechanics and Tunnelling, vol. 15, no. 2, pp. 182-189, 2022.
DOI:https://doi.org/10.1002/geot.202100072

Github repositories with code supporting the papers
• https://github.com/tfha/MWD-dataset
• https://github.com/tfha/ML-MWD-prediction-tabular
• https://github.com/tfha/ML-MWD-prediction-rocktype
• https://github.com/tfha/ML-MWD-prediction-images
• https://github.com/tfha/ML-MWD-clusterings
• https://github.com/TunnRL/TunnRL_TBM_maintenance



Be nice with the laptop
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In many ways, the field of machine learning can be said to be just as close to HPC computing (with its 
focus on hardware and heavy computation) as classic software development. Like HPC workloads, 
machine learning workloads often will benefit from faster execution and quicker experimentation when 
running on an HPC machine.

These features make an HPC a better choice than your local laptop for ML training.

• A remote HPC machine typically have more cores and a faster CPU than your laptop. More cores let 
you run code in parallelization faster. If your progress bar reach 1% done after 1 hour, you know 
what to do.

• Efficient cooling system. Massive ML training is not good for your laptop. Listen to the fan and feel 
the temperature . Have some empathy with your computer.

• More memory. Memory is important, especially in training neural networks with millions of 
parameters that need to be stored. Too little memory will crash your runs and freeze your computer.

• An HPC machine might have one or several strong GPU's with lots of memory. These are the go-to 
machines for computer vision tasks and NLP. For images larger than 10x10 pixels, this will take 
forever without a GPU.

• Training on an HPC also keeps your laptop ready to do other work (and not to break down . 



Docker is your friend
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The biggest problem, though, is to successfully get the dependencies, the 
python version, and the tools you have installed ++, so you actually can
run your script. If you have a simple script and only use a Numpy
dependency, this might work, but ML-training scripts are not like that. To 
take advantage of a cluster for machine learning training, you’ll need to 
ensure your development environment is portable and training is 
reproducible on an HPC.

The solution to your problems and to run ML training in an efficient and 
less nerve-breaking way, you should containerize your code and then run 
it on the remote. Docker is your friend.



Code academy description – HPC + docker for ML
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https://ngiwiki.slite.com/app/docs/zM8sK924BSt990

https://ngiwiki.slite.com/app/docs/lI_xi7DmodNoIB



My coding journey
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Dataset
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Dataset
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ML-
based
science
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Objectives  Description of process 

Code quality This study aims to verify the hypothesis that rock types can be predicted using a trained 
machine-learning model applied to a labelled MWD dataset. The code serves as the 
detailed blueprint for this experiment; therefore, it must be understandable, clean, and 
well-structured. Code is read more often than it is written. We endeavoured to follow the 
main principles outlined by Wilson et al. [19], [20] and Martin [33]. We used meaningful 
variable names, modularised the code, used type annotations in Python to clarify the 
format of inputs and outputs, and provided documentation for each function. We used the 
industry standard auto-formatter, Black [34] to increase the code's readability and 
recognizability. We also set up test functions to detect errors, thus ensuring the quality of 
our experimentation and illustrating how a function operates. 

Version 
controlling 
code and 
dataset 

We organised a well-structured project and regularly committed the code using the version 
control system git to a private GitHub repository (accessible to reviewers), which will be 
made public upon the paper's acceptance. The dataset (model ready csv-files) was version-
tracked using the Data Version Control (DVC) system [35] and quality-controlled while 
input-reading through Pandera [23] and shared on the scientific platform Zenodo [36]. 

Controlling 
programming 
environment  

We leveraged Poetry [37], an environment and package handling system, to manage 
dependencies. Poetry automatically generates a lock file describing all packages and their 
corresponding versions. The Python version used in this project was specified in a .python-
version file and managed using the Pyenv tool [38], simplifying the process of downloading 
and switching between Python versions. Notable differences exist between Python 
versions, such as Python 3.9 (introduction of match-case statements), Python 3.10 
(advanced type annotations), and Python 3.11 (performance enhancements), underscoring 
the importance of this process. 

Configuration 
of parameters 

Configuration values were controlled and type-parsed with Pydantic (and enhanced with 
tab completion) [35]. Experiment results were thoroughly organised and saved for all 
experiments using the Hydra [39] and MLflow [40] systems. Hydra helps avoid the pitfall 
of embedding "magic numbers" within the code and enables swift experimentation 
prototyping from the terminal. 

Experiment 
tracking 

MLflow gives you an overview and a log of all experiments with results in a clean web-
based view. Each model step (finding pipeline, hyperparameter optimisation, evaluation, 
final training) was grouped in experiments in Mlflow for easy comparison of experiment 
performance.  

Orchestrating 
experiments 

In our research, we integrated Hydra with GNU Make [41], a widely used automation tool, 
to execute scientific experiments efficiently. Hydra manages and organises diverse 
experiment configurations, enabling flexible and scalable setups. GNU Make, encapsulated 
in a Makefile, orchestrates these experiments, ensuring reproducibility and efficiency. This 
methodology not only streamlines the experiment process but also facilitates ease of 
replication for other researchers, embodying the principles of open and reproducible 
science. 

Control 
randomness 

Seed values were established to control the randomness in data splitting and algorithms. 
Unless clearly stated, seeding has been used in all experiments to be able to compare results. 
However, seeding was regularly turned off to explore the spread of results. 

Control 
operating 

Employing all the processes mentioned above enables the reproducibility of our research 
results in nearly all instances, provided the same dataset is used. However, an exception 
could be made when the hardware controlling software, such as CPU and GPU drivers, 

The principles and 
pipeline in the 
experimentation process 
for machine learning are 
presented in an online 
public presentation: 
https://prezi.com/view/chJ
8Djt4GKjeAdFiGvAl/



The power of smart optimisation
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Architecture – supervised prediction
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Supervised prediction models
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Explainability
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Explainability
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Explainability
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Clustering
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RL – the full tunnel cycle
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RL – the full tunnel cycle

15.06.2024 21



RL – predictive maintenance
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Wearing down the cutter disks
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Images from Bane NOR and NFF

Today’s maintenance 
decisions: human 
subjectiveness



TunnRL – CC – An automated decision system



Agent performance
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TD3 – Twin Delayed DDPG

(DDPG – Deep deterministic 
policy gradient)



Excavating 540 m tunnel (1 stroke = 1.8 m)


