
Decision making in
underground construction
Variations of ML – models
+ some hard learnt lessons

Tom F. Hansen

Image from Bane NOR

Agenda

• Why I did this
• Papers
• Some “non-science” experiences
• Software based research is still research
• The dataset part – variations of ML models
• The simulation part – Reinforcement learning

15.06.2024 3

Papers

15.06.2024 4

Paper I: Building and analysing a labelled measure while drilling dataset
from 15 hard rock tunnels in norway.
T.F. Hansen, Z. Liu, J. Torressen
In review in journal “Tunneling and Underground Space Technology”, 2024.
Preprint at SSRN:http://dx.doi.org/10.2139/ssrn.4729646

Paper II: Improving face decisions in tunnelling by machine learningbased
MWD analysis.
T. F. Hansen, G. H. Erharter, T. Marcher, Z. Liu, and J. Tørresen
Geomechanics and Tunnelling, vol. 15, no. 2, pp. 222–231, 2022.
DOI:10.1002/geot.202100070

Paper III: Predicting rock type from mwd tunnel data using a
reproducible ml-modelling process.
T.F. Hansen, Z. Liu, J. Tørressen
“Tunneling and Underground Space Technology”, 2024.
DOI: https://doi-org./10.1016/j.tust.2024.105843

Paper IV: A comparative study on machine learning approaches for rock
mass classification using drilling data.
T.F. Hansen, G.H. Erharter, Z. Liu, J. Torresen
In review in journal “Applied computing and geosciences”, 2024. Preprint
arXiv:http://arxiv.org/abs/2403.10404.

Paper V: Can we trust the machine learning based geotechnical model?
T.F. Hansen
Proceedings of the conference 5th ICITG, 2024, Colorado School of Mines, USA.
Public proceedings 30.06.2024.

Paper VI: Unsupervised machine learning for data-driven classification
of rock mass using drilling data.
T.F. Hansen, A. Aarset
In review in journal "Rock mechanics and rock engineering". Preprint arXiv:http:
//arxiv.org/abs/2403.10404.

Paper VII: Reinforcement learning based process optimization and
strategy development in conventional tunnelling.
G.H. Erharter, T.F. Hansen, Z. Liu, T. Marcher
Automation in Construction, volume 127, 2021.
DOI:10.1016/j.autcon.2021.103701

Paper VIII: TunnRL-CC: A computational framework for smart TBM
cutter changing.
T.F. Hansen, G. Erharter, T. Marcher
“Automation in construction”, volume 165, 2024.
DOI: 10.1016/j.autcon.2024.105505.

: Datascience

: Supervised learning

: Unsupervised learning

: Reinforcement learning

: Explainable AI

Papers during Phd

15.06.2024 5

Papers written during the PhD project, not included in the thesis
Paper: International distribution and development of rock mass
classification - a review
G. Erharter, N. Bar, T.F. Hansen, S. Jain, T. Marcher
Submit for review to the journal "Rock mechanics and rock engineering"..

Paper: A 2023 perspective on Rock Mass Classification Systems
G. Erharter, T.F. Hansen, S. Qi, N. Bar, T. Marcher
Conference: 15th ISRM Congress 2023 & 72nd Geomechanics Colloquium,
Salzburg, Austria

Paper: Towards optimized TBM cutter changing policies with
reinforcement learning
G. Erharter, T.F. Hansen
Geomechanics and Tunnelling, vol. 15, no. 2, pp. 665-670, 2022.
DOI:https://doi.org/10.1002/geot.202200032

Paper: Analysis of water ingress, grouting effort, and pore pressure reduction
caused by hard rock tunnels in the Oslo region
J. Langford, K. Holmøy, T.F. Hansen, K.G. Holter, E. Stein
Tunnelling and Underground Space Technology incorporating Trenchless Technology
Research, vol. 130, 2022.
DOI:https://doi.org/10.1016/j.tust.2022.104762

Paper: Introducing Reinforcement Learning to Tunneling
G. Erharter, T.F. Hansen, Z. Liu, T. Marcher
Conference: International conference on Computational methods and information
models in tunnelling, Bochum, Germany, 2022.

Paper: Norwegian tunnel excavation: Increasing digitalisation in all
operations
J.K.Y. Chiu, T.F. Hansen, T. Wetlesen
Geomechanics and Tunnelling, vol. 15, no. 2, pp. 182-189, 2022.
DOI:https://doi.org/10.1002/geot.202100072

Github repositories with code supporting the papers
• https://github.com/tfha/MWD-dataset
• https://github.com/tfha/ML-MWD-prediction-tabular
• https://github.com/tfha/ML-MWD-prediction-rocktype
• https://github.com/tfha/ML-MWD-prediction-images
• https://github.com/tfha/ML-MWD-clusterings
• https://github.com/TunnRL/TunnRL_TBM_maintenance

Be nice with the laptop

15.06.2024 6

In many ways, the field of machine learning can be said to be just as close to HPC computing (with its
focus on hardware and heavy computation) as classic software development. Like HPC workloads,
machine learning workloads often will benefit from faster execution and quicker experimentation when
running on an HPC machine.

These features make an HPC a better choice than your local laptop for ML training.

• A remote HPC machine typically have more cores and a faster CPU than your laptop. More cores let
you run code in parallelization faster. If your progress bar reach 1% done after 1 hour, you know
what to do.

• Efficient cooling system. Massive ML training is not good for your laptop. Listen to the fan and feel
the temperature . Have some empathy with your computer.

• More memory. Memory is important, especially in training neural networks with millions of
parameters that need to be stored. Too little memory will crash your runs and freeze your computer.

• An HPC machine might have one or several strong GPU's with lots of memory. These are the go-to
machines for computer vision tasks and NLP. For images larger than 10x10 pixels, this will take
forever without a GPU.

• Training on an HPC also keeps your laptop ready to do other work (and not to break down .

Docker is your friend

15.06.2024 7

The biggest problem, though, is to successfully get the dependencies, the
python version, and the tools you have installed ++, so you actually can
run your script. If you have a simple script and only use a Numpy
dependency, this might work, but ML-training scripts are not like that. To
take advantage of a cluster for machine learning training, you’ll need to
ensure your development environment is portable and training is
reproducible on an HPC.

The solution to your problems and to run ML training in an efficient and
less nerve-breaking way, you should containerize your code and then run
it on the remote. Docker is your friend.

Code academy description – HPC + docker for ML

15.06.2024 8

https://ngiwiki.slite.com/app/docs/zM8sK924BSt990

https://ngiwiki.slite.com/app/docs/lI_xi7DmodNoIB

My coding journey

15.06.2024 9

Dataset

15.06.2024 10

Dataset

15.06.2024 11

ML-
based
science

15.06.2024 12

Objectives Description of process

Code quality This study aims to verify the hypothesis that rock types can be predicted using a trained
machine-learning model applied to a labelled MWD dataset. The code serves as the
detailed blueprint for this experiment; therefore, it must be understandable, clean, and
well-structured. Code is read more often than it is written. We endeavoured to follow the
main principles outlined by Wilson et al. [19], [20] and Martin [33]. We used meaningful
variable names, modularised the code, used type annotations in Python to clarify the
format of inputs and outputs, and provided documentation for each function. We used the
industry standard auto-formatter, Black [34] to increase the code's readability and
recognizability. We also set up test functions to detect errors, thus ensuring the quality of
our experimentation and illustrating how a function operates.

Version
controlling
code and
dataset

We organised a well-structured project and regularly committed the code using the version
control system git to a private GitHub repository (accessible to reviewers), which will be
made public upon the paper's acceptance. The dataset (model ready csv-files) was version-
tracked using the Data Version Control (DVC) system [35] and quality-controlled while
input-reading through Pandera [23] and shared on the scientific platform Zenodo [36].

Controlling
programming
environment

We leveraged Poetry [37], an environment and package handling system, to manage
dependencies. Poetry automatically generates a lock file describing all packages and their
corresponding versions. The Python version used in this project was specified in a .python-
version file and managed using the Pyenv tool [38], simplifying the process of downloading
and switching between Python versions. Notable differences exist between Python
versions, such as Python 3.9 (introduction of match-case statements), Python 3.10
(advanced type annotations), and Python 3.11 (performance enhancements), underscoring
the importance of this process.

Configuration
of parameters

Configuration values were controlled and type-parsed with Pydantic (and enhanced with
tab completion) [35]. Experiment results were thoroughly organised and saved for all
experiments using the Hydra [39] and MLflow [40] systems. Hydra helps avoid the pitfall
of embedding "magic numbers" within the code and enables swift experimentation
prototyping from the terminal.

Experiment
tracking

MLflow gives you an overview and a log of all experiments with results in a clean web-
based view. Each model step (finding pipeline, hyperparameter optimisation, evaluation,
final training) was grouped in experiments in Mlflow for easy comparison of experiment
performance.

Orchestrating
experiments

In our research, we integrated Hydra with GNU Make [41], a widely used automation tool,
to execute scientific experiments efficiently. Hydra manages and organises diverse
experiment configurations, enabling flexible and scalable setups. GNU Make, encapsulated
in a Makefile, orchestrates these experiments, ensuring reproducibility and efficiency. This
methodology not only streamlines the experiment process but also facilitates ease of
replication for other researchers, embodying the principles of open and reproducible
science.

Control
randomness

Seed values were established to control the randomness in data splitting and algorithms.
Unless clearly stated, seeding has been used in all experiments to be able to compare results.
However, seeding was regularly turned off to explore the spread of results.

Control
operating

Employing all the processes mentioned above enables the reproducibility of our research
results in nearly all instances, provided the same dataset is used. However, an exception
could be made when the hardware controlling software, such as CPU and GPU drivers,

The principles and
pipeline in the
experimentation process
for machine learning are
presented in an online
public presentation:
https://prezi.com/view/chJ
8Djt4GKjeAdFiGvAl/

The power of smart optimisation

15.06.2024 13

Architecture – supervised prediction

15.06.2024 14

Supervised prediction models

15.06.2024 15

Explainability

15.06.2024 16

Explainability

15.06.2024 17

Explainability

15.06.2024 18

Clustering

15.06.2024 19

RL – the full tunnel cycle

15.06.2024 20

RL – the full tunnel cycle

15.06.2024 21

RL – predictive maintenance

15.06.2024 22

Wearing down the cutter disks

15.06.2024 23
Images from Bane NOR and NFF

Today’s maintenance
decisions: human
subjectiveness

TunnRL – CC – An automated decision system

Agent performance

15.06.2024 25

TD3 – Twin Delayed DDPG

(DDPG – Deep deterministic
policy gradient)

Excavating 540 m tunnel (1 stroke = 1.8 m)

