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Part IV: Early Stopping for
Non-Monotone Objective Functions
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We propose an early stopping method that ...
> only looks at the objective function.
> requires no problem specific knowledge.
> is applicable to multiple problems.
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Shaping from Polynomial to Linear Time
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Abstract—In evolutionary algorithms, much time is spent eval-
uating inferior phenotypes that produce no offspring. A common
heuristic to address this inefficiency is to stop ions early
if they hold little promise of attaining high fitness. However, the
form of this heuristic is typically dependent on the fitness function
used, and there is a danger of prematurely stopping evaluation
of a phenotype that may have recovered in the remainder of
the evaluation period. Here a stopping method is introduced
that gradually reduces fitness over the phenotype’s evaluation,
rather than accumulating fitness. This method is independent of
the fitness function used, only stops those phenotypes that are
guaranteed to hecome inferior to the current offspring-producing
phenotypes, and realizes significant time savings across several
evolutionary roboetics tasks. It was found that for many tasks,
time complexity was reduced from polynomial to sublinear time,
and time savings increased with the number of training instances
used to evaluate a phenotype as well as with task difficulty.
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I. INTRODUCTION

(e.g., [4]-[6]) of simulated robots are optimized, a single
evaluation can require significant computation time. In this
domain, phenotype evaluation is often terminated early if a
legged robot falls down and is not equipped to right itself [7],
[8] or fails to move during some interval [4], [9].

However, for many complex tasks it is non-rivial to deter-
mine whether a phenotype may have recovered fitness in the
remaining evaluation time: for example in some situations an
immobile robot with a recurrent neural network controller may
spontaneously begin moving again. In this paper, an early stop-
ping method is introduced that is domain independent and only
stops phenotypes guaranteed to have remained inferior even if
they had been evaluated fully. This method involves gradually
reducing fitness over evaluation time from some theoretical
maximum, rather than accumulating it. Once fitness falls below
the worst of the current offspring-producing individuals in the
population, its evaluation can therefore safely be terminated.

A wolatad tashminme in sunlnfineaes sahatise amalauad



Hyperparameter optimization

» irace by Lopez-lbafiez et al. (2016).

» Hyperband by Li et al. (2017).

» The sequential halving algorithm by Hutter et al. (2019).
» Performance envelopes by de Souza et al. (2022).
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Experimentation

We showed that it works on:
» NIPES in the ARE framework by Le Goff et al. (2020)
Super Mario by Verma (2020)
Classic control by OpenAl
MujoCo by OpenAl
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» gym rem2D by Veenstra and Glette (2020)



gym_rem2D by Veenstra and Glette (2020)




gym _rem2D by Veenstra and Glette (2020)
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gym _rem2D by Veenstra and Glette (2020)
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DANGER!

> Reporting objective values in decreasing objective functions.
» Parameter tgrace: fgrace = 0.2« fran.

» Incompatible with Novelty search.



Repo of the code of the paper

https://github.com/EtorArza/ESNOF
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Part V: Variable accuracy optimization

Our student Judith is working on this.



Motivating example
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Motivating example

Evaluation time depending on N
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How can we adjust N during optimization...

» Reduce the total evaluation time

» Maximize the solution quality



Applications...

» Choose the step size in robotic simulations...

» Choose the number of monte carlo samples in optimization
involving fluids...

» Choose sample size in symbolic regression...



Repo (work in progress)
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https://github.com/EtorArza/VariableModelAccuracy
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Part VI: Nested optimization
algorithms



EvoGym Bhatia et al. (2021)
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Microbots Liao et al. (2019)
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