'SmartAUVs for detection and qual of greenhouse gas seepage in the

Ivar-Kristian Waarum NGI and UiO Institute of Informatics ikw@ngi.no

NGI www.ngi.no ROBIN 20220330

SmartAUVs duration and collaborators

NRC call:	Artificial intelligence, robotics and autor	omy
Duration:	2022-2026	
Budget:	~16 MNOK	
History:	ACT4storage -> SmartAUVs	

AUVs are mobile sensor platforms that can can payload for environmental monitoring

Synthetic aperture son arho sounder pCO2 pCH4 pH -pO2 -Current meter

Could they be smarter?

Leakage sources are different

Pipelines

Overview of emission scenarios - from re

Leakage scenario	Simulating scenario	Physical location/environm	e in tission type	Priority
1a - Pipeline, CO2, Low	Leakage from a pipeline	iûsako fjord, ~70 m water depth	.CO2, low leak rate (1	1
rate	coastal region	Sandy, relatively flat seabed	l/min)	
1b- Pipeline, CO2, med rate	ureakage from a pipeline coastal region	iûsao fjord, ~70 m water depth	CO2, medium leak ra (10 l/min)	ite
1c- Pipeline, CO2, "high rate	"Leakage from a pipeline coastal region	iûsao fjord, ~70 m water depth	CO2, medium leak ra (50 l/min)	£2
1d- Pipeline, CH4, low r	a te akage from a pipeline coastal region	iûsao fjord, ~70 m water depth	CH4, low leak rate (1 l/min)	1
1e-Pipeline, CH4, media rate	Intreakage from a pipeline coastal region	iûsao fjord, ~70 m water depth	CH4 medium leak ra (10 l/min)	tđ
1f-Pipeline, CH4, "high" rate	Leakage from a pipeline coastal region	iØsao fjord, ~70 m water depth	CH4 medium leak ra (50 l/min)	t€
2a – Well, CO2, Low rat	eLeakage from an offsho well	eNorth Sea (Smeaheia), 300 m depth, sandy, flat seabed	w@@@?; low leak rate (1 l/min)	. 2
2b- Well, CO2, medium rate	Leakage from an offsho well	North Sea (Smeaheia), 300 m depth, sandy, flat seabed	w@@@r, medium leak ra (50 l/min)	nt2e
2c- Well, CH4, low rate	Leakage from an offsho well	North Sea (Smeaheia), 300 m depth, sandy, flat seabed	w Gtte r, low leak rate (] l/min)	2
2d-Well, CH4, medium	ratæakage from an offsho well	North Sea (Smeaheia), 300 m depth, sandy, flat seabed	wa tte rmedium leak ra (50 l/min)	tel
3 - Natural CH4 seepag	eDistributed CH4 seepag from multiple point sou	eNorth Sea rces	CH4, many small releases (10 points, l/min each)	3 0.1
1e – Pipeline in clay	Leakage from a pipeline coastal region	່ທີ່ເສັຍ fjord but clay seabed, so smaller bubble size	CH4, medium leak (10l/min)	4
2e - Well, CO2, very hig leak rate	Leakage from an offsho well	North Sea (Smeaheia), 300 m depth, sandy seabed	w@@@r, 100 l/min	5
2f - Well, CH4, very hig leak rate	hLeakage from an offsho well	North Sea (Smeaheia), 300 m depth, sandy, flat seabed	wattetr, 100 I/min	5

1. Pipeline leakage, coastal environment

- 2. Leakage along well, North Sea

- Natural CH4 seepage
- Pipeline leakage, clay seabed
- Leakage along a well at higher leak rates

Following a pipeline helps the AUV to navigate, but not to detect leakage or act intelligently

Pipelines

Wellheads, old and new

O&G operator's vision

The characteristics of gas seepage is heavily the marine environment

The characteristics of gas seepage is heavily the marine environment

Strong current

From SOCOLOFSKY et al "Multi-phase plumes in uniform and stratified crossflow"

The characteristics of gas seepage is heavily the marine environment

Currents Buoyancy Stratification

Acoustic sensors for bubbles, chemical sensors for dis

From SOCOLOFSKY et al "Multi-phase plumes in uniform and stratified crossflow"

High resolution simulation framework

Current at 2.0 m depth - 20-02-2023 06:00 UTC

- Developed a 250 x 250 m meter scale grid that can be applied to both
- For local conditions, we will apply forcing data from larger models:
 - Currents
 - Temperature
 - Salinity

Slide from M. Dewar/Pl

The PLUME modelling system

• Aims

- Develop a numerical model to show the plume dynaptics of free case
- Gas bubble plume physics
 - Initial bubble sizes
 - Bubble rise velocities
 - Gas dissolution
 - Bubble rise heights

- Localised and coastal chemistry
 - Changes in seawater density and currents
 - Distribution of the dissolved solution plume
 - Increases in p[€]O
 - Reductions in pH*
 - Increase in pO

*reactions limited to any

PLUME simulation

Bubble Plume

Simulations - 'Digital ocean'

- Up to ten different leakage scenarios
- Leakage scenarios simulated over 2 tidal cycles (~12 hours
- Leakage data stored at second intervals at every point in a one meter resolution
 - Dissolved gas concentration
 - Bubble parameters
- Oceanographic data stored at ~10 minute intervals
 - Currents
 - Salinity
 - Temperature
 - Density

0 knot

The output from an AUV mission should be a n seepage with the highest accuracy where it is most

Adaptive behavour Realtime infor

Realtime information

informatio A priori

Realtime information

HAR I

Images from ACT4storage

- 60 m water depth, geochemical conditions representative of North S
- Release of dissolvedor 0, gas-phase 60 (bubbles), and a combination of both

Images from ACT4storage

- SmartAUVs field trials planned for 2024 and 2025
- Leakage source ~400 meters from shore

'Digital ocean' -> ROBIN

- Up to ten different leakage scenarios
- Leakage scenarios simulated over 2 tidal cycles (~12 hours
- Leakage data stored at second intervals at every point in a one meter resolution
 - Dissolved gas concentration
 - Bubble parameters
- Oceanographic data stored at ~10 minute intervals
 - Currents
 - Salinity
 - Temperature
 - Density

0 knot

'Digital ocean' -> ROBIN

- Use a leakage scenario as training or testing
- Hunt for artificial leakage in a realistic environment
 - or map salinity/temperature
- Read parameters from the simulation (stored as netCDF or
 - E.g. parameter c at position x,y,z at time t
 - Use directly as artificial sensor input, or add sensor noise/range etc.
- Let agent compute next position to sample at
- Pair with robot model if you want kinetics as well
- Add no-go zones or areas of interest

- Path planning
- Mapping
- Decision making
- more?

0 knot

